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Thermo field dynamics of quantum spin systems is formulated, which gives a 
new variational principle at finite temperatures. The KMS relation is refor- 
mulated as identities among thermal vacuum states. Path integral formulations 
of the thermal vacuum state are given, which yield a new "thermo field Monte 
Carlo method." Thermo field dynamics of finite-spin systems are studied in 
detail as simple examples of the present method. Pertubational expansion 
methods of the thermal state and time-dependent state are also given. 
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1. I N T R O D U C T I O N  

The pu rpose  of the present  p a p e r  is to extend the the rmo  field 
dynamics  (1-3~ to q u a n t u m  spin systems and  to give a formal  express ion of 
the thermal  state. This is convenient  for cons t ruc t ing  a va r ia t iona l  theory  
at finite t empera tu res  and  for numer ica l  calculat ions.  T h e r m o  field M o n t e  
Car lo  and  t ransfer -mat r ix  me thods  are p r o p o s e d  to s tudy  numer ica l ly  the 
thermal  vacuum state  of q u a n t u m  spin systems. Some  useful fo rmulas  con-  
cerning the thermal  vacuum state  and  p ro jec t ion  ope ra to r s  are given in the 
Appendix .  The  thermal  states of f ini te-spin systems are given explicitly. Per-  

t u rba t iona l  expans ions  of the the rmal  state and  nonequ i l ib r ium state are  
also given. 
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2. GENERAL F O R M U L A T I O N  OF T H E R M O  FIELD D Y N A M I C S  
IN Q U A N T U M  SPIN S Y S T E M S  

As was generally formulated in Fermi and Bose systems, ~l 3) the 
statistical average of any physical quantity Q at temperature T is expressed 
by the "thermal vacuum" expectation value of the form 

<Q> =-Z-~(fl)Tr Qe -~'~ = <O(fl){ Q [O(fl)> (1) 

and 

1 
Z(fi) = Tr e - ~ *  fl = - -  (2) 

' kBT 

where ~ is the Hamiltonian of the relevant quantum system. Here, the 
thermal vacuum state [O(fi)) is constructed in a replicated space 
In, fi> = in> )7> as 

Io(fi)> =z(/~) 1/2~ e-~E"/2 >,,~> 
n 

: z(/~) -~/~ e - ~ ' / ~  ~ In, ,~> 
n 

where In> is an eigenstate of Yf with an eigenvalue E=, namely, 

(3) 

In) =En In) (4) 

and [r~ > is the corresponding eigenstate in the fictitious dynamical system 
which is identical to the original system J4 ~ through the following map- 

ping: 

(1) 

(2) 

The tilde spin operator S is, in general, defined (~-3) by 

(fi{ S Irh) = (m[ St In) = (n( S Ira>* (5) 

The commutation rule is given by 

[S, (~] = 0  (6) 

Then, we obtain the following conjugation rules (1 3): 

AB=AB,  c~A+c2B=c*.d+c*B 
(7) 

A* = A*, A =A,  and IO(fl)> = IO(fi)) 

Here cl and c2 are c numbers and c* denotes the complex conjugate of c. 
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For spin operators S x, S y, and S ~, we have explicitly 

1(0 gr=! i - - 1 1  
= 2 \ 1  10)' 2 ( 0 i  0)'  S ' = 2 ( 0  

s+=s~-is~=(~ ~), s-=sx+isy=(~ 
I S  x, S ~3 = - i S  ~ 
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~ 

More conveniently, the above thermal vacuum state is also expressed (4) by 

{O(fl) ) = Z(t~)-1/2 exp(-  �89 [i) (9) 

where 

namely, 

II> = Y Is, ~> 
s 

Here Is> is a microstate as a direct product of N spinors 

(0~ ,  S,~i �89 and S~fl~-  ~ 
fl~ , , /1  , 

Is>=lsl ,s2, . . . , sN>, Isi>=c~, or fl, 

The space )g) is the tilde spin space defined by (5) and (6). 
It is easy to prove (4) that 

F, In,,~> =Y, Is,~> = 1I> 
/7 S 

using the unitarity of the transformation 

{i,>}: u{is>} 

i.e., 

namely, 

J,~> =y] u.,  Is> 
s 

n 

(10) 

(12) 

(13) 

(14) 

(15) 

8 2 2 / 4 2 / 5 - 6 - 2 1  
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This yields the equivalence of the two expressions (3) and (9). This 
equivalence is very useful from a practical point of view, because the state 
Is, ~) is immediately obtained, while the state In, ~)  is generally difficult to 
obtain. (5) 

More generally, the time-dependent state ] gt(t)) is expressed by 

[ ~tt(t)) = p(t) 1/2 II) = p(t) '/2 ~ Is, g> (16) 
s 

where the density matrix p(t) is given by the solution of the equation 

ih ~ p(t) = l-~r p(t)]  (17) 
( 7 I  

for a time-dependent Hamiltonian ~'(t) .  Therefore, we have 

ih ~-t I ~ ( t ) )  = Jg(t) [ gt(t)) (18) 

when [a(F(t), ~gT~(t)] = 0 as is usually the case, and 

~ - ~  -- ~ ( t )  - ~(t~") (19) 

An equation similar to (18) was obtained (6'7) for a time-independent 
Hamiltonian aft. 

The formal solution of (18) is given by 

I~(t)) =exp+ \ g  o ~(s)  (20) 

using Kubo's generalized ordered exponential. ~8) The above expressions 
(13) and (20) hold in general quantum systems as well as in quantum spin 
systems. 

3. K U B O - M A R T I N - S C H W l N G E R  RELATION 

As in Bose and Fermi systems, (2~ it is easy to express the Kubo-Mar-  
tin-Schwinger (KMS) relation {9'1~ in terms of the thermo field dynamics. 

The Heisenberg representations of spin operator S and S are given by 

and 

S( t) = e(it/h)a~ SeC-it/h)s = e~it/h)ae Se(-it/h)* (21) 

S( t"~= e{i'/h)~ Se {-i '/h~ = e{-it/h)~ Se~i'/h)'~" (22) 
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Then we have (2 4) the following relations: 

S( t) IO(fl) ) = S * ( t -  �89 }0([3) ) 

and 

(23) 

{ O(fl)[ S( t) = { O(fl)l S t ( t+  �89 (24) 

These are called thermal state conditions. (2'3) The above relations are 
proven (4) even in the spin representation Is, i ) .  The above thermal state 
(KMSTU (4)) conditions (23) and (24) yield (24) the ordinary KMS 
relation: 

(O(fl)[ S(t) Q(t') IO(fl) ) 

= (O(fi)] S*(t + �89 Q t ( t ' -  �89 jO(fi)) 

= (O(fl)l Q(t') S ( t+ ihfl) [O(fl)) (25) 

The above relations (23) and (24) will be useful in C*-algebraic for- 
mulations of statistical mechanics in terms of thermo field dynamics. 

4. T I L D E - C O N J U G A T I O N  I N V A R I A N T  U N I T A R Y  SPIN T R A N S -  
F O R M A T I O N  

It is convenient to find here a tilde-conjugation invariant unitary spin 
transformation U such that 

where 

S;(~)~- USTU -1, S+-(fl) ~- USf-U ' ( 2 6 )  

U t =  U and U-= U (27) 

Then, the transformed "thermal operators" S f(/3),  Sf ( f l )  .... satisfy the spin 
and antispin commutation relations 

ES~Y(fi), S f ( f ) ]  = iS}(fi), [S~(fl), S/(fi)]  = - iS~ 
(28) 

Es;~(p), s ; ( p ) ]  = o, Es;(/~), s ; (~) ]  = o 

and 

ESY(f), sj(p)]  = o 

and the Hermiticity relations 

x ~-__ x (s~ (~)) - s; (~), ( s f  (~))* = q (~) (29) 
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The simplest and nontrivial example may be given by the following 
transformation: 

S+(fl) = uS~ + 2vS~S~ 

s+(fl) = uS + + 2vS~S + 

S;([~) = bl2S; -- 1)2S; ~ blV( S ;  ~ q- S ;  STi  

and 
S]~(fi) = u2Sy "-~- v2Sj - uv(S + E + S ;  E )  (30) 

where the coefficients u and v are real parameters satisfying the relation 

u 2 + v 2 = 1 (31) 

namely, they are functions of a single variable fi as 

u = u(fl) and v = v(fl) (32) 

It is easily shown (4) that the above new spin variables S+(fl), SS-~), Sj(fl) 

and S~(fi) are generated by the following unitary transformation: 

U= exp[O(fi)(S/ S[- - S•- S? )] (33) 

through (26) with u(fi)= cos O(fi). 
Now we define a thermal state IO(fl)} (~ by 

IO(fl)}(~ = [] (u + v S /  S? ) I0} (34) 
J 

where (0) (0) (0) 
�9 x x . - . x  ( 3 5 )  

10> = f i l f i 2  "'~N~- 1 1 1 2 1 N 

and N denotes the number of spins. Then, we can confirm easily that 

s;(~) io(/~)>(o~ = s;(~)io(p)>(o~ = _�89 io(~)>(o~ 

s/(~)sT(~) Io(/~)>(o)= io(fi)>(o), s;(fl)s?([~) IO(/~)>(~ Io(~)> (~ 

S7(fl) IO(fl)>(~ O, Sj'-~(fl) IO(fl)>(~ 0 (36) 

sj (~) I1(#)>}~ jo(~)> (~ 

where 

j l (~ )  >~o~ _ & (/~) I o(/~) > ~o~ = s ;  Io >, 

sj (/~) 11(/~)>~~ = Io(/~)>~o) 

I 1 ( ~ ) > : - s / ( ~ )  Io(/~)>(~ s + 10> 
(37) 
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That is, the "thermal state" jO(fl)) ~~ is the "eigenstate" of the "thermal 

operators" Sf(/~) and $7(/~ ). 
The inverse transformations of (30) are given by 

s? = . s? (~ ) -  2~s;(~) s2(~) 

s ?  = . s ? ( B )  - 2~s;(/~)~ s2 (~)  ~ ~ (3s) 

This inverse transformation will be useful in expressing spin Hamiltonians 
in terms of thermal operators. Such Hamiltonians expressed by thermal 
operators can be used to derive temperature-dependent spin waves, as will 
be published elsewhere. 

The above state IO(fl)) (~ is shown easily to be the thermal vacuum 
state of the following noninteracting spin system: 

N 

~3f0-- --gBH ~ S] (39) 
j = l  

under the relations that 

u ( p ) = ( l + e  ~o) , / 2 ,  v(/~)=e ;~~ -~'~) '/~ (40) 

with ~o = � 8 9  

In practical applications of the above transformation, the transfor- 
mation coefficients u and v (or fie)~ �89 may have more general and 
physical meaning such as an effective field, as will be discussed later in 
more detail. 

5. P A T H  I N T E G R A L  F O R M U L A T I O N  OF T H E  T H E R M A L  S T A T E  
A N D  T R I A L  T H E R M A L  V A C U U M  

According to the present general formulation of the thermo field 
dynamics of quantum spin systems, the thermal vacuum of a spin system 
with Hamiltonian ~ is formally given by 

I 0(/~) ) = (z(/~)/2 N) -1/2 e -~'/~'~" I 0(0) ) (41) 
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where the state 10(0)) is the thermal vacuum in the high-temperature limit 
and it is given explicitly by 

1 ~ - 2 - N / 2  IO(O))=I)j - ~ ( I + S f S f ) L O ) -  II) (42) 

with (10) in our spin representation. 
It is convenient to make use of the generalized Trotter formula (1~ 14) 

eAl+  A2+ --" + A ,  = lira (e(1/n)Ale (1In)A2"'" e(1/n)Ap) n (43) 

The convergence of the limit (43) is assured by the following 
inequality(1~-14): 

Q~IAJ ) (j~ )n l(~ )2 (~ ) exp - e(a/~)AJ <~- II/jll exp IIAjl[ (44) 
j 1 H j 1 j 1 

With the use of the above formula (43), we obtain the following path 
integral formulation of the thermal state: 

IO(fi)) = Z(fi) -1/2 l i m  { e - ( 1 / 2 n ) ~ ( ~ l )  • . ."  • e - ( 1 / 2 n ) ~ ( ~ )  } (lst) 
n ~ o o  

x {e -(1/2n)~(~) • -.. x e-(1/2n)/s~(~s)} (2na) 

x {e (1/2.)~ar(~1). . .  e - - (1 /Zn)[3H(~u)}(n th) I I )  (45) 

where the Hamiltonian ~ is decomposed into local operators as 

g(r = ~ ~ (~ )  (46) 

There are many other representations (4) of path integrals of the thermal 
state. 

Some useful formulas to calculate (45) explicitly are given in the 
Appendix. 

6. T H E R M O  FIELD V A R I A T I O N A L  PRINCIPLE 

The path integral formulation (45) in the preceding section suggests a 
"thermo field variational theory." That is, we consider a trial thermal state 
of the form 

Igt(0)) = y[ uu...k(o ) 10(0)) (47) 
< 6 - - ' k )  
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with some appropriate local operators Uo... k(0). The variational parameter 
~? (or many parameters 0~...k) can be determined by the variational prin- 
ciple of minimization of the free energy F(O) given by 

F(O) = E(O) - TS(O) (48) 

where the variational energy 

E(O) = ( ~u(0)J x/g I ~ (0 ) ) / (  g*(0)] g-'(0)) (49) 

and the variational entropy S(O) may be calculated as 

S(O) = --kB Y,p~ logp~ (50) 
cr 

with the probability p~ to find the trial vacuum [~u(0)) in a state Ic~) 
specified by the spin representation. 

From this point of view, the nth approximant of the path integral for- 
mula (or decomposition formula) (45) may be regarded as a systematic 
variational state, namely, 

[tItn)=(Zn(fl)/2u ) 1/2(e-(/~/2"~l""e-(~/2n)'xeu)n IO(0)) (51) 

where ~ / =  ~ ( ~ ) ,  and 

Z,(fi) = Tr(e-(~/2~)~et'" e (~/2~)~s)2n (52) 

This is very important from a practical point of view, as will be shown 
later. 

As a simple example of the "thermo field variational method," we dis- 
cuss here the well-known molecular field theory in the Heisenberg model 

w =  - J Z  s i a ,  (53) 
<6> 

The molecular field thermal state of this system is given in the form 

J 
(54) 

where the coefficients u,~ and v,, are determined self-consistently by 
minimizing the free energy F= E--  TS. Here the energy E is expressed by 

NzJ 
E -  2 (O(fl)J Si .  SylO(fi))(mf)= -�89 2 (55) 
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in terms of the magnetization m ~-(S~), in our approximation for the 
relevant spin system with interaction 3", where z denotes the number of 
nearest neighbors. The entropy S is also given by the expression 

2 + V2m log v 2) S = - N k B ( u  2 log u m 

= -NkB{(�89 + m) log(�89 + m) 

+ (�89 m) log(�89 m)} (56) 

from the molecular field thermal state (54), because the magnetization m 
takes the form 

m = ( S ; )  = (O(fl)l S 2 j O ( f l ) )  (mr) 

i 2 2 _  2 1 ( 5 7 )  ~(~m-u~) �89 ~m 2 ~__~ ~ _ _  U m - -  

e 1. Now, the minimization of the with the normalization condition u~ + v m = 
free energy F = E -  T S  yields the molecular field equation of state 

m = �89 t a n h ( { f i z J m )  (58) 

A more practical application will be given later. 

7. T H E R M O  FIELD T R A N S F E R - M A T R I X  M E T H O D  

As one of important applications of the path integral formulation of 
the thermal state, we propose here "thermo field transfer-matrix method." 
From the general formulation on the thermo field dynamics given in the 
preceding sections, the thermal vacuum is also written 

IO(f i ))=~# lim Y-n IO(0)) (59) 
n ---~ o o  

where X denotes the normalization and 

Y = Jl1"- N ~-N; (60) 

as was given in (45). This formulation has the great merit that the transfer- 
matrix 3- can be obtained explicitly for finite systems without diagonaliz- 
ing the Hamiltonian. The product y-n is also easily calculated by a high- 
speed computer through the formula 

j - . = ( . . . i ( j 2 ) . ) . . . )  2 (61) 

for n = 2  p. 
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The transfer-matrix method for the partition function in quantum spin 
systems was already discussed by the present author ~ and by 
Betsuyaku. (~6) 

8. THERMO FIELD MONTE CARLO METHODS 

Owing to the path integral formulation of the thermal state given in 
Section 5, we can now extend the Kuti-Blankenbecler-Suger (KBS) Monte 
Carlo method at zero temperature (~6! to finite temperatures. Blankenbecler 
and Sugar u7) applied Kuti's stochastic method with important sampling u6) 
to their formula 

( Q ) r = o  = ~ o l  Q I~o)  = lim {~{ e-~~Qe-~e I~) (62) 

for the ground state I~Uo), using Trotter's formula (43), as was applied to 
quantum Monte Carlo simulations first by Suzuki, Miyashita, and 
KurodaJ ~8) 

Now we can extend their method ~7) to the thermal vacuum state 
IO(fl)) which is expressed by the path summation (45). This may be 
called ng) "thermo field Monte Carlo method." For more details, see 
Ref. 19. 

There are two new aspects in the present thermo field MC methods. 
The first one is that the thermal state [O(fl)) contains the replicated tilde 
states {]~)j, IT)j}. The second point is that Trotter's number n and tem- 
perature T are related to each other in our formulation, as shown in Fig. 1. 
Namely, if we put fl/(2n)= Ar and fix it for a specific simulation, then we 
have n=fl/(2Av)=I/(2kBTAr). That is, if we increase the number of 
Monte Carlo steps, i.e., n, for d r  fixed, then the system moves to lower 
temperatures. The state IO(fl,)) thus obtained becomes now the initial 
state of the MC simulation of the state lO(fin+~)) at lower temperature 
fl,+~, as shown in Fig. 1. Therefore we can perform successively MC 
simulations for a wide range of temperatures very efficiently. This is one of 
the great merits of the present new methods. 

n ~ o o  

I 
I 
I 
I 
I 
~k 

nm �9 n 3  

I 
I 
I 
I 
I 
I 
I 

" A  

flz Ill ~Io 

I 
I 
I 
I 
I 
I 
I 

Fig. 1. Illustration of continuous change of inverse temperatures {B} by increasing Trotter's 
number n in the thermo field Monte Carlo simulation. 
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9. APPLICATIONS TO THE TWO-DIMENSIONAL TRIANGULAR 
ANTIFERROMAGNETIC QUANTUM HEISENBERG MODEL 

One of the most interesting applications of the thermo field dynamics 
will be Anderson's problem on the phase coherence of movable singlet 
pairs in the two-dimensional triangular antiferromagnetic quantum Heisen- 
berg model. (21) Quite recently Hirakawa e t  al. (22) found an experimental 
candidate such as NaTiO2 to test Anderson's picture. 

In order to study the quantum effect of this system at finite tem- 
peratures, the present formulation of thermo field dynamics in quantum 
spin systems is very appropriate, because we can discuss the thermal state 
explicitly in the form 

IO(/~)) = Y e x p ( -  � 8 9  I1) (63) 

where the Hamiltonian ~ is given by 

~ = ~ Jt~j ; Jt~j = - Jc~ i . a j ( J < 0 )  (64) 
(U) 

9.1. Cell Approximants 

A practical method to study the thermal vacuum state of this system 
will be to decompose the exponential operator in (41), as was discussed 
already. A new aspect is, however, how a large cell should be used in the 
decomposition of (41). The simplest one is given by the following pair- 
product approximant(23): 

10(/~))PPA = ~1  I~I e x p ( -  �89162 II)  (65) 
(0) 

Here, the partial exponential operator in (65) is given by 

exp( - 1/~Jti:) = exP(�89 - a j) 

= a Q i j  + bP i j  (66) 

where K = J / k  e T < 0, and 

a = e (1/2~x and b = e -(3/a)K (67) 

Here P o  and Qij are projection operators defined by 

P o  = �88 - a i a j ) ,  Q o  = 1( 3 + ~," eJ) 
(6s) 

P~ = P,j, Q,} = Q/j and Pu + Q,J = 1 

The partition function in this approximation might be obtained in a closed 
form. It will be reported in future. 
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In order to study the present system more systematically, we may use 
the following formulation: 

V __  / \ 

in some appropriate order of partial exponential operators. This may be 
useful in studying our system in the thermo field transfer-matrix and 
Monte Carlo methods proposed in Sections 7 and 8, respectively. 

There are many other larger cell approximants. (4) 

9.2. Var ia t ional  Theory  of  Anderson's  Problem 

The previous pair-product approximant (65), namely, 

fO(fl))PPa =JV" I-[ (aQo+bP~)II) (70) 
(u) 

suggests a variational treatment of the present problem at finite tem- 
peratures, though there have been published many papers (24 27) concerning 
variational calculations on quantum spin systems at zero temperature. 

It will be essential to study the present system at finite temperatures to 
see whether a new type of coherent phase appears or not. For this purpose, 
the thermo field variational method will be very convenient. We give here 
only some preliminary considerations concerning the above problem. 

P. W, Anderson (21) proposed that random arrangements of singlet pair 
bonds on a triangular lattice would give a trial ground state with an energy 
lower than that in the N6el state at zero temperature, as shown in Fig. 2. 
This state is represented as 

[ gt)A = ~ArA [ ~  ~ (OiOsP~)](I)lO) (71) 
(g) 

J' " -"  " - - ' : , '  
H H 

�9 - . :  , , . . - ,  . - .  
,:':.__.',. : .--. 
.__..__..__..:'.:" 

Fig. 2. Anderson's variational ground state. (211 
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in our representation, where P/j is the projection operator into the singlet 
state, being given by (68), and {0j} are an algebra defined by 

[0j, Ok] =0,  0~=0,  and (Oh 0]0j 10} = 1 (72) 

which are quite analogous to the Grassmann algebra. (28) 
Now we extend Anderson's state (71) at zero temperature to the case 

at finite temperatures. The simplest extension of it may be 

I~J)T=--~fTE ~ [OiOj(uQu-}-/)Pij)] [I) I0) (73)  
uJ) 

in our formulation, where Qu is the projection operator into the triplet 
state, being given by (68). Then, the total energy of this trial thermal state 
is given by 

E =  ( T  I ~ h T ) r =  - � 8 9  ( T  I a , 'a j  IT )T  

- �89  1--4P~j ] T } T ~  --3NJ(u2--/)2) (74) 

in the pair-bond approximation. 
The total entropy may be given by 

S = -�89 2 log b/2 ~- i)2 log V 2) (75) 

On the other hand, the normalization of the thermal vacuum state gives 
the relation 

3u 2 + v 2 = 1 (76) 

where we have used the properties 

( l l  Po kl}o.= 1 and ( l l  Qa I1}~j=3 (77) 

with the notation ]1 },j given in the Appendix. Therefore, our free energy is 
expressed by 

F = E -  TS 

1 { E ]} = ~ N  - J ( 1  - 4 x ) + k B T  (1 - x )  l o g - - - - - ~ + x l o g x  (78) 

with x = v 2. By minimizing this free energy with respect to x, we obtain 

l e 4K 
u 2 = - -  and v 2 - - -  (79) e--4X-I- 3 e--4K + 3 
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where K = J/kB T. Thus, the thermal state coefficients u and v behave as in 
Fig. 3. A crossover effect occurs around the temperature T • given by 
v2(Tc) ~_ 1/2, namely 

~- \ k e J  log 3 - 3.6 IJ]/kB (80) 

Below this crossover temperature, singlet pairs are dominant. Above T • 
the thermal vacuum state becomes disordered. This quantum crossover 
effect (29) might be relevant to the experimental result by Hirakawa et al. (12) 

The above treatment may be too simple, because it is equivalent to the 
independent pair approximation. In order to take into account the 
correlation effect among singlet pairs, we have to include the interaction 
among singlet pairs. For this purpose, the larger-cell approximants dis- 
cussed in Section 9.1 will be useful. The research in this direction is 
promising. 

There is another possibility that there might occur a phase transition 
below which the long-range order (LRO) does not exist but only the phase 
coherence among singlet pairs exists, in the two-dimensional triangular 
antiferromagnetic quantum Heisenberg model, as was pointed out by P. W. 
Anderson. (21) It will be a quite interesting problem to study which 
possibility is realized in the above system, by extending the present thermo 
field variational theory. This investigation is now in progress. 

• 
2 

v 

(a) 
LLL~LLLLLLLLLLLLL,~. 

I 

(b) 

0 T • ~ T  

Fig. 3. Schematic temperature dependence of u and v, where T • denotes the crossover tem- 
perature: (a) Singlet pairs dominant thermal state, and (b) disordered state. 
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10. THERMO FIELD D Y N A M I C S  OF FINITE-SPIN SYSTEMS 

As an illustrative example of the thermo field dynamics, we consider 
here finite-spin systems. The simplest example is a single-spin system, or 
equivalently a noninteracting spin system as was discussed in Section 4 to 
obtain the generalized Bogoliubov transformation. 

a0.a. Two-Spin System 

The next simple example is a two-spin system of the form 

~2 = -J• + (rTrrY) - J,i r - / ~ B H ~  a; (81) 
J 

The thermal vacuum of this system is given by 

I O ( f l )  >h • ~ h  e-(1/2)fl'ff 2 II> 

= jtrh e(1/2)K,r aje(1/2)(KII- K• (1/2)h((r; + a;) I I )  (82) 

where 

K•  = f lJ•  KII = f lJLI ,  and h : flt~sH (83) 

It is easy to show that 

IO(fl))h = ~Arh { (bo - ao)(C - s) so 

+ ao(c + s)(c~ + s]) li ) , j -  2ao(CS2h + sc2)(~iflj + fl,r 

+ 2ao(C+S) ChSh(4fij--fi,fij)}, 0 2 = ~  (84) 

where we have used the formulas in the Appendix and also used the follow- 
ing abbreviations: 

c = cosh �89 K• s = sinh �89 - K• 

ch = cosh(�89 sh = sinh(�89 

ao = exP(�89177 bo = exp( - 3K• (85) 

and 

Now the thermal state can be expanded as 

tO(~) Ph = I0(~) )o + h I0(~) ) . )  + O(h ~) 

(86) 

(87) 
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where 

[O(fl) >o = ~o{ [(bo - ao)(C - s) dij + ao(C + s) I'l >ij - 2aos(~ifij + fi~c~j) } ] 

and 

to 

IO(fl) )(:t)= #1/{1) ao(C q- S)(d:i@ - -  flifij) (88) 

In particular, for the isotropic case, the zeroth thermal state is reduced 

JO(fl) )(is~ Ii >ij + ( b - a )  ~ij) 

= Yo(aQ~j + bPij) I'1 )~j (89) 

with a = exp(K/2) and b = e x p ( - 3 K / 2 ) ,  in agreement with (65). 

system shown in Fig. 4, whose 

10.2. Three-Spin  System 

Next we consider a three-spin 
Hamiltonian is given by 

~ k  = -J(a~" a b + aj" ak + ak" cry) (90) 

i k 
Fig. 4, Three-spin system. 
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The thermal state of this system is expressed by 

IO(fl)> 3 = ~ e x p ( -  �89  

= JV 3 exp[ - �89 i + ~jk + 5r ] [I)  

= JV3[cosh(3K) + ~sinh(3K)(ai "aj+ aj" ak + ak" ai)] II) (91) 

where we have used the identity 

e K~3 = cosh(3K) + ~sinh(3K) 2r (92) 

with 

~ 3  ~- 0"i" O'j "~ 0"j" O- k -~ O" k ' (7 i (93) 

Equivalently the thermal state (91) is written 

10(fl))3=~{e(3/2)K--4sinh(~K)(Pu+Pjk+Pki)} 1I) (94) 

In the low-temperature limit T ~ 0, we have 

Io(o9))~ = w;(/ '~j  + Pj~ + P~) I/)  

= JV;(d,j 1I )~ + s:k )i )i  + sk, )i )j) (95) 

for J < 0. The physical picture of this state is clear, where 

i )k = ak + fik = akak +/~k~k (96) 

Namely, the singlet parr is moving around coherently in the triangular cell. 
This picture holds still at finite temperatures low enough, as is seen from 
the expression (94). More explicitly, we have 

[ 4 ] 
[O(f l ) )3=dV 3 e(3/2)Kll)--ssinh K (,~ijll)k+Sj'kl~)i+Skill)j) (97) 

By the way, the pair-product approximant of the thermal state of this 
system is given by 

( IO(/3))PeA = YPPA e x p \  

( x exp \ -  }- 
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I aC2[S,j~kj(~iO~k -~ ~i~k) ~- Sjk~ik(~jO~i-I- ~iflJ) +~ 

+ ~,~fa~ + L~I~ 

(98) 

where we have used the formula in the Appendix. In the low-temperature 
limit T--* 0, the above pair-product thermal state becomes 

Lo(r > G C  ~ -~ y ~,,~,js~j~(a,~ + ~ j G )  (99) 

for J <  0. It should be remarked that this state is rather different from the 
true ground state (95), namely, our pair-product approximant is not so 
good at very low temperatures, as it should be. 

Next we discuss the variational thermal state l ~ ) r  in (73) for our 
comparison. It is expressed by 

] g t > r = S r ~  l-~ [OiOj(uQo+vPo)] [I> 
<g> 

= ./Vr[3U + (v -- u)(Po-+ Pjk + Pk,)] [I> 

= S ~ I 3 ( v  + 3u ) v-u ] -~ ( a , ' a j + o j ' a k + a e ' a l )  I I )  (100) 

in our three-spin system, where u and v are given by (79) or are shown in 
Fig. 3. In the low-temperature limit, we have 

I~ ' )  T= o = x0(P,~ + Pj~ + P~i) II> 

= ~o(~,j fi>~ + ~j~/~>~+~, Ii>j) ( lol)  

for J < 0 .  
Thus, the variational thermal state agrees with the true ground state 

(95) in the low-temperature limit. Even at finite temperatures, the 
variational thermal state of this three-spin system is rather good. Compare 
the coefficients ( v -  u) and 3u with - ~  sinh (3K/2) and e (3/2)~, respectively. 
Thus, we find that the variational thermal state (100) is much better than 
the pair-product thermal state (98) in the whole region of temperature. The 
reason why the above variational thermal state (100) is improved com- 
pared with the pair-product thermal state (84) is that the both states are 

822/42/'5-6-22 
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quite similar in form, but that there is no overlap of singlet pairs in (100), 
whose restriction in the variational thermal state may compensate the non- 
commutativity of pair interactions {Yes, j} in the thermal state (91). 

11. P E R T U R B A T I O N A L  EXPANSION OF THE T H E R M A L  STATE 
A N D  T I M E - D E P E N D E N T  STATE 

We consider here a system ~o with a perturbation ~ as 

~ = ~ + ~  

The corresponding thermal vacuum state can be expanded as 

[O(fl) > = JV exp( - ~fidf o - �89 II) 

where 

and 

(lO2) 

= # f "  1 +  __�89 d i l l . . .  ~ d f inJCl ( f in )  . . . ~ l ( f l l  ) O ( f l ) > o  
n = l  ~0 

(lo3) 

[O(fl))o=Yoexp(-�89 (1041 

dt'~l (fl) = e-(1/2)/~*o~ e(l/2)/~a% (105) 

Here the normalization constant JV' should be expanded as 

(xV") - 2 =  (I[ e x p ( - f l ~ o - f l J t ~ ) I I )  

= ( I , e - ~ ~  ~ (-1)"f~dfi~'"~ ~~ 
n = l  ~0 

~(2f l , )  �9 �9 af~(Zfll)] II) (106) X d/L 

These results will be useful in discussing the response function for the per- 
turbation ~ .  

Similarly, we can discuss the perturbational expansion of the time- 
dependent perturbation ~,~f~(t). Our starting point is Eqs. (18) with (19), 
namely, 

4 I g t(t) ) = (~o + ~ ( t ) )  I ~P(t) ) (107t ih 
Ol 
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where 

~0 = ~0 - ~0 and ft~(t)=.~(t)-~l(t) (108) 

The formal solution of (129) is given by 

This can be expanded as 

_[(t-iht~ ] x e x p |  ~o [~V(to)) (110) 

where 

Vo(t) V;o(t) (111) 

with 

Some 
elsewhere. 

applications of this perturbational 

(112) 

method will be given 

CONCLUDING REMARKS 

In the present paper, the thermo field dynamics for interacting quan- 
tum systems is formulated. However, the present formulation is quite 
general and holds in general quantum systems such as Fermi and Bose 
systems. In particular, it should be remarked that the thermal vacuum state 
is given by 

j O(fi)) = Z(fl)-1/2 exp( -  �89 ]I) (113) 

for any interacting Hamiltonian ~ and for the identity state jI) which is 
expressed as 

[I) = ~  ]~, ~) (114) 

for any representation [c~). This property is essential in performing quan- 
tum Monte Carlo simulations in the present formulation. 
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The temporal evolution of the time-dependent state IT(t))  is 
described by the equation 

ih ~ I T(t) > =- fg(t) 19F(t) > (115) 
(71 

where o@(t) is given by 

~ ( t )  = ~(t) - o@(t) (116)  

We can derive Kubo's linear response theory r from the above fun- 
damental temporal evolution (115). 
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APPENDIX:  S O M E  USEFUL F O R M U L A S  C O N C E R N I N G  THE 
T H E R M A L  V A C U U M  STATE A N D  PROJECTION 
OPERATORS 

The present formulations of the variational theory and quantum 
Monte Carlo simulation are quite different from the previous 
ones, (24-27'12'1548'2~176 in that we are treating here replicated systems, 
namely real spins {Sj} and tilde spins {Sj}. Thus, we need some new for- 
mulas concerning the above new operators and states. 

First we define the sates, e~,/3~, ~ ,  ~z, ~,  /~, I'[ >ij, singlet state s,j by 

~i=(~)i, ~i=(O1)i, ~ 1 z _  213i Si~,=~, S~, - -  

(A2) 

and 

I ~ )ij = ~i~(j-If- ~i 4 -~ fli(Xj -~ fliflj (A3) 
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Then, we have the following formulas: 

(a) Pij t l )~ = so si j =- sij (A4) 

where Pij is the projection operator defined by (90). 

(b) Po(ei f i j )=2 1/2Sij , P~(/~e~)= -2-1/2so. (A5) 

(C) PijPkl  I'l )ijkl = Sij/"Sk! (A6) 

(d) P,j (s i~c~:)  = l~so~k ' P ~ ( s i k [ ~ j )  - -  ~s~kl (aT) 

(e) P~k P~k 11 ) ijk = so-s~k~(gqc~j + ~ flj)/2 (A8) 

(f) PoPikPjk Ii )ire = so~(~ iek  + ~,flk)/4 (A9) 

I 1 ) i j k l -  2SikSjlSijSki (A10) (g) Pj tP i jpk  t ^ __ 1 ~ 

(h) PikPj tPi jPk t  I1)0kt = 5Sikl Sjtsifikt~ ( A l l )  

Here i r j r k r 1. Many other formulas can be obtained easily. 
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